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Linear response of the Lorenz system

Christian H. Reick
Alfred-Wegener-Institute for Polar and Marine Research, Columbusstraße, D-27568 Bremerhaven, Germany

~Received 2 October 2001; published 6 September 2002!

The present numerical study provides strong evidence that at standard parameters the response of the Lorenz
system to small perturbations of the control parameterr is linear. This evidence is obtained not only directly by
determining the response in the observableA(x)5z, but also indirectly by validating various implications of
the assumption of a linear response, like a quadratic response at twice the perturbation frequency, a vanishing
response inA(x)5x, the Kramers-Kronig relations, and relations between different response functions. Since
the Lorenz system is nonhyperbolic, the present results indicate that in contrast to a recent speculation the large
system limit~thermodynamic limit! need not be invoked to obtain a linear response for chaotic systems of this
type.
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I. INTRODUCTION

Linear response theory is concerned with the reaction
dynamical system to small external perturbations. For eq
librium systems this reaction can be computed by the Ku
theory@1#, starting from the microscopic Hamiltonian of th
considered system. This theory is extremely successfu
predicting electric conductivities, magnetic susceptibiliti
dielectric functions, polarizabilty, and other ‘‘generalize
susceptibilities@2#. Its most famous result is the fluctuation
dissipation theorem that relates the response of a syste
its equilibrium fluctuations.

From the viewpoint of dynamical systems theory the d
namics underlying statistical mechanics is chaotic. For a s
class of these systems, uniformly hyperbolic diffeom
phisms, Ruelle recently presented a rigorous derivation
the Kubo theory@3# and formally generalized this derivatio
to hyperbolic chaotic flows@4#, which include beside equi
librium systems also dissipative systems, i.e., systems
from equilibrium. Although hyperbolic flows are too narro
a class to be physically relevant~compare Gallavotti’s dis-
cussion of his ‘‘chaotic hypothesis’’@5#!, Ruelle argues that if
a system shows a linear response, it is appropriately
scribed by the Kubo theory@4#.

But not all systems react linearly to small external pert
bations. Examples where a linear response fails to exist
phase transitions with a diverging or discontinuous~general-
ized! susceptibility~the magnetic susceptibility at the Cur
point; the specific heat at the transition to superconductivi!,
or systems with hysteretic behavior, such as ferromagn
Also systems whose dynamics can essentially be represe
by chaotic one-dimensional~1D!-maps will generically not
react linearly to external perturbations. This follows from
study by Ershov@6# who showed that the invariant densitie
of chaotic 1D maps can typically not be expanded in a p
turbation parameter. An example is chaotic systems in
inverse period-doubling cascade, whose ‘‘sensitive dep
dence on parameters’’ has been studied by Farmer@7#. For a
two-dimensional nonintegrable Hamiltonian system this ty
of problem has been discussed by Takahashiet al. @8#.

In view of these examples the question arises how
class of systems showing a linear response can be chara
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ized. As already mentioned, this class should be much w
than the hyperbolic systems considered by Ruelle. But c
sidering nonhyperbolic systems leads to the general prob
that such systems are typically infinitesimally close to bifu
cations that on parameter changes may destroy the diffe
tiability of the invariant density with respect t
parameters—an important ingredient of the Kubo theory
and may render observables to behave discontinuou
Guckenheimer and Holmes call this the failure of t
‘‘dogma of structural stability’’ in dynamical systems theo
~p. 255f of Ref. @9#!. Abraham and Marsden argue that
physically more appropriate notion of stability may b
‘‘downright statistical’’ ~p. 595 of Ref.@10#!, while Ruelle
speculates that this problem may only be solved by invok
the thermodynamic limit~p. 410 of Ref.@11#!.

As a preparation for future investigations on how a line
response may arise in nonhyperbolic chaotic systems,
present study provides a specific example, where despit
nonhyperbolicity a linear response appears to exist: the
renz system at standard parameters@12#. This example indi-
cates that there might be another solution to the stab
problem of dynamical systems theory, namely, that there
ist bifurcations across which observables behave cont
ously differentiable so that the thermodynamic limit need n
be invoked. That the Lorenz system is nonhyperbolic is
pecially known from the investigations of Sparrow, wh
showed that at standard parameters perturbations of the
trol parameter~usually calledr ) induce homoclinic bifurca-
tions, whatever small the perturbation might be@13#. The
present approach to the linear response of the Lorenz sy
is numerical, i.e., nonrigorous. Hence the main task of
present paper is to make the evidence for the existence
linear response as safe as possible. This is done not onl
checking the linearity of the response directly, but also
testing various implications of the assumption of a line
response, as the prediction of a quadratic response at t
the perturbation frequency, a vanishing linear response in
antisymmetric observable, the validity of a particular relati
between two different response functions, and the Kram
Kronig relations. The results of these investigations turn
to be in full agreement with the existence of a linear respo
of the Lorenz system, despite its nonhyperbolicity.
©2002 The American Physical Society03-1
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The present study differs from most other studies of
linear response of chaotic systems by the nature of the
turbation considered here: it drives the system through bi
cations so that in view of the considerations from above
existence of a linear response stands in question. For no
perbolic systems~as the Lorenz system! almost every pertur-
bation would do so. Nevertheless, there are two types
perturbations to which the response can be guaranteed
linear, even if the system is nonhyperbolic. One is a per
bation that is equivalent to a coordinate transformation. T
examples Grossmann constructs for his linear respo
theory of 1D maps are of this type@14# ~compare Ref.@15#!.
For 2D maps this type of perturbations was studied in R
@16#. The situation for such perturbations parallels the cas
hyperbolic systems, for which it is guaranteed that upon s
ficiently small perturbations the system is still topologica
conjugate to the unperturbed system@3,11#. The other type of
perturbations for which a linear response can generally
expected, are perturbations that can be represente
changes in the initial conditions. This is the case, e.g., for
response to a~down-!step-function or delta-function typ
perturbation. In such situations the response is simply a
laxation in the unperturbed system towards its invariant d
sity ~as long as it is unique, as in mixing systems! so that the
behavior of the observables depends smoothly on the pe
bation. Such perturbations were considered in Refs.@17,18#,
mainly in search for a fluctuation-response relation for n
equilibrium systems.

Apparently the first discussion of the relationship betwe
a nonlinear dynamics and linear response was van Kamp
critique of the Kubo theory@19# ~which essentially applies
also to Ruelle’s approach!. His point is that a macroscopi
cally linear response is only possible because of microsc
randomness, i.e., because of the nonlinearity of the mi
scopic evolution equations. But in Kubo’s theory, accord
to van Kampen, macroscopic linearity is derived from mic
copic linearity, which should be physically wrong; Kubo
answer is found in Ref.@20#. This objection has inspired
quite a number of studies of the linear response of cha
systems, aiming at a better understanding of the relation
between nonlinear dynamics and linear response@21#. With
van Kampen’s objection the kinetic approach to statisti
mechanics stands against that of Gibb’s. Therefore S
compared for a simple chaotic 2D map, response calculat
from a kind of kinetic approach with those from the Kub
approach and obtained different values for the static respo
@22#—a result that should be further scrutinized. Saito a
Matsunaga demonstrated how coarse graining can be
voked to reconcile chaotic dynamics with linear respon
theory @23#.

The idea of the following investigation is to start from th
definition of a response function and compare numerical
periments with this definition and its theoretical cons
quences. Therefore, first the considered response proble
specified and a numerical method to compute dynamica
sponse functions is developed~Sec. II!. ~Without further
proof a short account of this method has already been g
in Ref. @24#.! In the following sections, the various aspects
a linear response are considered: the linearity itself~Sec. III!,
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the quadratic response at twice the perturbation freque
~Sec. IV!, the Kramers-Kronig relations~Sec. V!, relations
between different response functions~Sec. VI!, and finally
the vanishing of the linear response in particular observa
due to the symmetry of the Lorenz system~Sec. VII!. Addi-
tional, especially technical aspects are discussed in the
pendices.

II. DEFINITIONS AND NUMERICAL PROCEDURE

In the following the response of the Lorenz system to tim
dependent perturbations of its control parameterr is studied.
This system is given by

ẋ5s~y2x!,

ẏ5@r 1e~ t !#x2y2xz, ~2.1!

ż5xy2bz.

As Lorenz@12# we takes510, b58/3, andr 528 @25#. The
perturbatione(t) of r will be specified below. At these pa
rameters the Lorenz system is known to be chaotic and
nonhyperbolic: any finite change ofr results in sequences o
homoclinic bifurcations by which the topology of the chao
attractor is changed@13#. The response to the perturbation
investigated by studying the behavior of an observableA(x),
which will be taken asx,z, or x2.

In Kubo-type response theories, to which Ruelle’s a
proach also belongs, response functionsxA(t), also called
‘‘susceptibility,’’ are defined by

Š^dA~ t !&‹5E
2`

t

dsxA~ t2s!e~s!1O~e2!, ~2.2!

whereŠ^dA(t)&‹ is an ensemble average defined by

Š^dA~ t !&‹5E dx dA~ t !r0~x!, ~2.3!

with dA(t) being the deviation from the ensemble avera
Š^A&‹ in the unperturbed system,

dA~ t !5A„Fe~ t,t0 ;x!…2Š^A&‹. ~2.4!

HereFe(t,t0 ;x) denotes the flow of the perturbed syste
i.e., the flow of Eq. ~2.1!, with the initial condition
Fe(t0 ,t0 ;x)5x. The initial densityr0(x) is chosen here as
the invariant densityr0 of the unperturbed system, i.e., fo
t,t0 it is assumede(t)50. Alternatively, one could take an
initial density different fromr0. Thereby one could study
relaxation phenomena, but this is not intended here. The
per limit t of the integral in Eq.~2.2! expresses causality: th
response at timet is determined only by perturbations from
the past. Accordingly, one can set

xA~t!50 for t,0 ~2.5!

and extend the integral to infinity. It should be noted that
Eq. ~2.3! a linear relationship betweene() and Š^dA()&‹ is
3-2
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LINEAR RESPONSE OF THE LORENZ SYSTEM PHYSICAL REVIEW E66, 036103 ~2002!
claimed, but whether such a relationship exists isa priori not
clear and will depend on the considered system, the typ
perturbatione() and also the chosen observableA().

In order to verify numerically the validity of Eq.~2.2! for
a particular system one has to specify the perturbatione(t).
For example, one could takee(t)5ed(t2t0), whered() is
the Dirac delta function. This givesxA(t)5e21

Š^dA(t0
1t)&‹. So xA could be computed by studying the time d
velopment ofA after the pulse att0 for an ensemble of start
ing points from the chaotic attractor. This was done in R
@17# for the Lorenz system and other systems.

Such a singular perturbation is equivalent to a chang
the initial conditions. So using this procedure the susce
bility is computed by starting with a nonequilibrium en
semble and following the subsequent relaxation of theunper-
turbed system. But in view of the problem o
nonhyperbolicity the present investigation is concerned w
the question, whether the reaction of a system to realdefor-
mationscan be described in terms of a susceptibility. So h
persisting perturbations, which change the system and
only the initial conditions, will be considered. To this end t
perturbation is chosen as

e~ t !5eQ~ t !cos~Vt !, ~2.6!

where Q(t) is the unit step function so that implicitelyt0
50 has been chosen.

This perturbation allows, ifx exists, a very simple proce
dure to compute numerically the dynamic susceptibility

xA~v!5E
2`

`

dteivtxA~t!, ~2.7!

the Fourier transform ofxA(t). Under mild assumptions on
can show~see Appendix A! that for the perturbation~2.6!
xA(v) is given by

xA~V!5 lim
e→0

2

e
lim

T→`

1

TE0

T

dteiVtdA~ t !52 lim
e→0

1

e
^eiVtdA~ t !&,

~2.8!

where the single angular brackets^•••& denote the tempora
mean~in contrast to the double angular brackets introduc
before, which denote the ensemble mean!. This is the basic
formula used in the following numerical investigation.
states that to computexA(v5V) one has to perturb the con
sidered system by Eq.~2.6! at the very frequencyv5V,
compute a time series$dA(t)% t from it, and evaluate the
right-hand side of Eq.~2.8!. To getxA as a function ofv one
has to repeat this for different driving frequenciesv5V.
The linearity of the response is reflected in Eq.~2.8! by the
fact that the limitT→` on the right-hand side should b
proportional toe in order forxA(v) to be independent ofe.
@The factor 2 arises in Eq.~2.8! because a cosine has be
chosen for the perturbation instead of a complex expon
tial.#
03610
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Actually, Eq.~2.8! will be computed for finite timeT and
finite perturbation strengthe only. So it is important to see
how the right-hand side without limits behaves as a funct
of T ande. Let

xA
T~V!5

2

eTE0

T

dteiVtdA~ t ! ~2.9!

denote the finite time approximation ofxA(V). Now it is
assumed that the time series$dA(t)% t consists of two parts: a
periodic part resulting from the periodic perturbation, and
chaotic parta(t). Such a decomposition is suggested by
glance at the spectra of the perturbed system. As an exam
in Fig. 1 the autocorrelation spectrum ofz is shown for the
Lorenz system perturbed at frequencyf 5V/2p53 @26#.
Clearly visible is a continuous part with superimposedd
peaks at harmonicsv5nV. This decomposition in a chaoti
part and a periodic part gives for sufficiently largeT and
sufficiently smalle,

xA
T~V!'

a~V!

eT
1xA* ~V!eiVT

sinVT

VT
1xA~V!

~2.10!

~see Appendix B!. So the condition to obtain accurate n
merical results forxA(V) is

eVT@1 ~2.11!

because then the first and second term are negligible.

III. LINEARITY OF RESPONSE IN A„x…Äz

In this section the linearity of the response is demo
strated for the observableA(x)5z by direct evaluation of
Eq. ~2.8!. Results of such computations are plotted in Fig.
The upper part shows the modulusuxz

T(v)u of the finite time
approximationxz

T for driving frequencyf 5V/2p520 and
T51000 as a function ofe. For smalle the 1/e decrease
predicted by Eq.~2.10! is present; it stems from the chaot
background in the time series ofdz(t). The true value of
uxz(v)u is reached ate'1023, where the value ofuxz

T(v)u

FIG. 1. Autocorrelation spectrum of the observablez for the
strongly perturbed Lorenz system (e55.0,f 53).
3-3



r-

a
n

re
th

s,
-

y

o

tio

b
re

e

r-

d

e

wo

-

CHRISTIAN H. REICK PHYSICAL REVIEW E66, 036103 ~2002!
gets independent ofe. Similar computations have been pe
formed for other frequencies and always a plateau inuxz

T(v)u
could be identified@27#. Computations of the phasewz of
xz5uxzue2 iwz give also reliable results@Fig. 2~b!# @28#.
These results indicate that the response inz is indeed linear
and the response functionxz(v) exists.

Putting together results from similar computations
other forcing frequenciesV gives the response functio
xz(v), plotted in Fig. 3 for the range of frequenciesf
50.004 tof 568.0. In the upper part of the figure once mo
the modulus is shown, whereas the lower part depicts
phasewz(v). In order to indicate the reliability of the result
computations for different values ofe have been superim
posed.

The behavior ofxz(v) at low and high frequency is ver
regular. It is found limv→0xz(v)'1 and limv→`uxz(v)u
;v22; the latter result can also be obtained from a Kub
type theory by a moment expansion ofxz(v) ~see Ref.@24#!.
In the intermediate frequency range the response func
shows typical resonance behavior.

IV. QUADRATIC RESPONSE AT 2 V

Another important feature of linear response can
checked numerically. A Fourier transform of the defining
lation ~2.2! gives Š^dA(v)&‹5xA(v)e(v)1O(e2). If one
now specializes to a periodic perturbation at frequencyv
5V, one sees that the definition~2.2! assumes a respons
only at that very driving frequencyV. But usually~compare
Fig. 1! a response is also observed at harmonics ofV. So in
order for the relation~2.2! to be valid, this response at ha

FIG. 2. e dependence ofxz
T5uxz

Tue2 iwz
T

for f 520.0 andT
51000.~a! Modulus uxz

Tu; ~b! phasewz .
03610
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monics should be at least of ordere2. This has been checke
numerically by computing

CA~V!5 lim
e→0

2

e2 lim
T→`

1

TE0

T

dtei2VtdA~ t !

52 lim
e→0

1

e2^e
2iVtdA~ t !&. ~4.1!

This relation defines in analogy to Eq.~2.8! a response func-
tion that describes in ordere2 the response at 2V to a per-
turbation at frequencyV. The results for the observabl
A(x)5z at driving frequencyf 520 and finiteT are dis-
played for differente in Fig. 4. For smalle the usual drop off
is seen. This is followed by a plateau whereuCz(V)u is
independent ofe. This shows that indeed the response at t
times the driving frequency is proportional toe2. So once
more agreement with the definition~2.2! is found.

V. KRAMERS-KRONIG RELATIONS

Another implication of the definition~2.2! is the Kramers-
Kronig relations. LetxA8 andxA9 denote the real and imagi
nary part ofxA . Then one can derive from Eq.~2.2! together
with the assumed causality ofxA the Kramers-Kronig rela-
tions @2#

xA8 ~V!51
1

p
PE

2`

`

dv
xA9 ~v!

v2V
, ~5.1!

FIG. 3. The response functionxz5uxzue2 iwz. To indicate the
numerical accuracy the computations from three differente values
are shown (T54000).~a! Modulus;~b! phase.~a! is reprinted from
@24# with permission from Elsevier.
3-4
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LINEAR RESPONSE OF THE LORENZ SYSTEM PHYSICAL REVIEW E66, 036103 ~2002!
xA9 ~V!52
1

p
PE

2`

`

dv
xA8 ~v!

v2V
. ~5.2!

HereP indicates that the principle value of the integral has
be taken. Figure 5~a! @Fig. 5~b!# compares the direct resu
for xz8 @xz9# on the left-hand side of Eq.~5.1! @Eq. ~5.2!# with
its computation throughxz9 @xz8# on the right-hand side
where the integrals have been evaluated by the trapezo
rule. The curves are in good agreement. This verifies ano
important signature of response functions, namely, their c
sality. It should be noted that numerically the response fu
tion xz(v) considered here is obtained from a large num
of independent numerical experiments at different frequ
cies.

FIG. 4. Quadratic response at the first harmonic. Shown isuCz
Tu.

The system is perturbed at frequencyf 510.0 but the response i
observed at frequency 2f 520.0. (T5400).

FIG. 5. Check of the Kramers-Kronig relations for the respon
function xz5xz81 ixz9 (e50.5,T54000).~a! Comparison of direct
numerical data forxz8 with a computation ofxz8 throughxz9 by the
first Kramers-Kronig relation.~b! Analogous computations forxz9 .
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Hence, the confirmed causality is a gross feature ofxz(v)
and not a consequence of the individual experiments. Th
fore the good agreements in Fig. 5 also indicate the valid
and accuracy of the employed numerical method by wh
xz(v) was computed.

VI. RELATIONS BETWEEN RESPONSE FUNCTIONS

From Eq.~2.8! one can derive a general relation betwe
the response functionsxA(V) and x Ȧ(V), where Ȧ(t)
5(d/dt)A@Fe(t,t0 ;x)#,

x Ȧ~V!5 lim
e→0

2

e
lim

T→`

1

TE0

T

dteiVt
d

dt
dA~ t !

5 lim
e→0

2

e
lim

T→`

~2 iV!

T E
0

T

dteiVtdA~ t !

52 iVxA~V!, ~6.1!

where it has been assumed that for physically relevant st
A(t) is bounded so that the border terms of the partial in
gration vanish. This relationship is also obtained by a Kub
type theory~see Appendix D.! Considering for the Lorenz
system the observablesA(x)5z and A(x)5x2, one obtains
from Eq.~6.1! by invoking the first and third equation of Eq
~2.1!

2 iVxx2~V!5x ẋ2~V!52s@xxy~V!2xx2~V!#,
~6.2!

2 iVxz~V!5x ż~V!5xxy~V!2bxz~V!,

so that after the elimination ofxxy one finds that the respons
in x2 is completely determined by the response inz,

xx2~V!52s
b2 iV

2s2 iV
xz~V!. ~6.3!

Numerically this relation is confirmed in Fig. 6 by compa
ing xx2, computed directly from the perturbed Lorenz sy
tem, with xx2, computed by Eq.~6.3! from xz . A host of
other relations between response functions can be der
from Eq. ~6.1!, as shown in Appendix C.

VII. VANISHING RESPONSE IN A„x…Äx

For the Lorenz system another implication of Eq.~2.2! is
the vanishing of the linear response in the observableA(x)
5x. This can be seen as follows.

The Lorenz system is invariant under the transformat
S(x,y,z)5(2x,2y,z). Accordingly, a mappingh(x) will
be called symmetric ifh+S5h and antisymmetric ifh+S5
2h. At standard parameters the attractor of the Lorenz s
tem has the same symmetry as the system itself@13# so that
time and ensemble averages of antisymmetric observa
vanish. The perturbatione(t) in the perturbed Lorenz system
~2.1! conserves the symmetry so that one can expect that
for small but finitee time averages of antisymmetric obser

e

3-5
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CHRISTIAN H. REICK PHYSICAL REVIEW E66, 036103 ~2002!
ables vanish. With this observation a time average of
second equation in Eq.~2.1! gives

^cos~Vt !x&e50, ~7.1!

where an indexe has been attached to the angular bracke
stress that it denotes a time average over the perturbed
namics. Now, sincêx&050, the response function related
A(x)5x is according to Eq.~2.8! given by

xx~V!5 lim
e→0

2

e
^eiVtx&e , ~7.2!

so that with Eq.~7.1! the real part ofxx(V) vanishes. But
according to the second of the Kramers-Kronig relatio
~5.1! this implies that also the imaginary part is zero so t

xx~V!50. ~7.3!

This result can also be derived from a Kubo-type theory;
Appendix D.

A numerical analysis confirms this expectation: Figure
shows the dependence ofxx

T at frequencyf 520 on e. The
curve shows the typical 1/e behavior always present for finit
T. For large values ofe the data seem to saturate at a ve
small level, but two orders below the plateau found for t
response inA(x)5z ~compare Fig. 2!. In contrast to the case
of the response inz, the plateau here is strongly fluctuatin

FIG. 6. The susceptibilityxx25uxx2ue2 iwx2, computed directly
from Eq. ~2.8! and indirectly fromxz via Eq. ~6.3!. Differences are
so small that they are invisible in the plot (e50.5,T54000). ~a!
Modulus; ~b! phase.
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Such a fluctuating plateau is in accordance with a vanish
susceptibility: it can be explained by an additional contrib
tion to Eq. ~2.10!, which arises from fluctuations in th
height of the periodic component of the system, alwa
present for finite lengthT of the time series~see Appendix
B!. Moreover, this plateau seems not to stabilize, even
very long time series. All these findings indicate thatxx(v)
is indeed zero. The same conclusion can be drawn from
8, where the autocorrelation spectrum of the observablex in
the presence of strong perturbations is shown. Although
spectrum is deformed as compared to the unperturbed
~not shown!, no d peaks atf or its harmonics are present, bu
such peaks would be expected for a linear response. A
merical analysis for the observableA(x)5y, whose response
should also vanish@use the first of Eqs.~2.1!#, gives similar
results.

VIII. DISCUSSION

The foregoing considerations have shown that for the
renz system at standard parameters the various implicat
of the definition~2.2! of a response function are consiste
with numerical results. Accordingly, there is strong eviden

FIG. 7. e dependence ofuxx
Tu for f 520.0 (T51000).

FIG. 8. Autocorrelation spectrum of the observablex for the
strongly perturbed Lorenz system (e55.0,f 53.0).
3-6
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that for the Lorenz system a linear response exists. Thi
insofar interesting, as Ruelle’s rigorous foundation of line
response theory applies only to hyperbolic systems. So,
cording to the numerical results presented here, the Lor
system provides an example where despite nonhyperbol
a linear response exists.

But why this linear response exists is currently not und
stood. Nevertheless, it is clear that its existence is relate
the nature of the bifurcations that arise from the perturbat
because one can easily think of bifurcations that preve
linear response. In the present case changes of the co
parameter induce homoclinic bifurcations that newly int
duce or destroy unstable periodic orbits@13#. One could
speculate that~for some unknown reason! the effect of these
bifurcations on the differentiability of the invariant measu
with respect to the perturbation parameter is exactly ze
But it could also be that the differentiability is only approx
mate. This might happen if the newly created or just d
stroyed orbits are much longer than the decorrelation tim
the chaotic dynamics. In that case the contribution of th
orbits to the invariant measure would be negligible, so tha
any practical sense these topological changes would no
fect the invariant measure and it remains differentiable
would be interesting to check this idea numerically.

Previous studies of the linear response of chaotic syst
considered the response in the time domain. Instead, in
present study the response was analyzed in the frequ
domain. This was made possible by showing that dyna
response functionsxA(v), originally defined by ensemble
averages, can as well be obtained from particular time a
ages of the system periodically perturbed at that very
quencyV5v @see Eqs.~2.2! and~2.8!#. This relationship is
of quite general nature. Its derivation was based mainly
the physically plausible assumption that response funct
have a finite decay time. Moreover, in Appendix D it h
been shown that under this assumption several implicat
of this time series approach to linear response can as we
obtained by a Kubo-type theory so that it is in various
pects equivalent to a Kubo formalism.

In principle, from the computed response functionxz ,
shown in Fig. 3, Ruelle’s prediction, that for dissipative sy
tems no fluctuation-dissipation relationship exists@3,4#,
could be checked: If a fluctuation-dissipation relations
holds, then response functionsxA(t) could be represented a
x(t)5Q(t)C(t), whereC(t) is a correlation function. In
that case the dynamic susceptibilityx(v) would have in the
lower complex plane the same poles as the spectral func
C(v). But since the poles of the latter are identical to t
resonances of the considered system, the poles ofx(v)
would then also represent resonances. Hence, to disprov
existence of a fluctuation-dissipation relationship, it wou
be sufficient to show thatx(v) contains poles outside the s
of resonances. Since the first few resonances of the Lo
system are known from a periodic orbit analysis by Eckha
and Ott@29#, such a comparison should in principle be po
sible here by locating the poles of the numerically kno
susceptibilityxz(v). I tried this by computing Pade´ approxi-
mants toxz(v). Some of the poles obtained in this wa
approximately reproduced the resonances from Eckhardt
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Ott. But unfortunately the locations of the other poles cou
not be trusted, since they turned out to vary erratically w
the order of the approximants. Hence it could not be deci
whetherxz(v) shows poles outside the spectrum of res
nances. This ‘‘noisy’’ behavior of the poles is probably
result of the extremely peaked nature ofxz(v) ~in Fig. 3 this
is obscured by the logarithmic plotting! that arises mainly
from the first few resonances so that the contribution of ot
poles cannot be resolved.

Finally it should be noted that the Lorenz equations d
scribe in a certain approximation the dynamics of NH3 lasers
@30,31#. Hence, similar computations ofxx2 as those pre-
sented here, but for somewhat different system parame
could predict the intensity response to pump-parameter
turbations.

APPENDIX A

In this appendix the basic relation~2.8! is derived on the
basis of three assumptions: First, it is assumed thatx(v) is
meromorphic in the lower complex plane without poles
infinity. This assumption is reasonable because then the u
physical interpretation ofx(v) is possible: Poles ofx(v)
represent resonances. Second, it is assumed that the res
functions decay with finite memory so that all poles lie o
the real axis. And finally it is assumed that the time ser
$eiVtdA(t)% t is ergodic, so that

lim
T→`

1

TE0

T

dt eiVt
Š^dA~ t !&‹5 lim

T→`

1

TE0

T

dt eiVtdA~ t !

5^eiVtdA~ t !&. ~A1!

Equation~2.8! can now be derived as follows. With Eq
~A1! one gets from the definition~2.2! with the periodic
perturbation~2.6!

^eiVtdA~ t !&5 lim
T→`

1

TE0

T

dt eiVt

3E
2`

`

dsxA~ t2s!eQ~s!cos~Vs!.

~A2!

It is convenient to introduce the following representation
the unit-step functionQ(t):

Q~ t !5 lim
k→0

E
2`

` dv

2p
e2 ivt

i

v1 ik
, k.0. ~A3!

This, together with the Fourier representationxA(t)
5*(dv/2p)e2 ivtx(v), gives
3-7
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^eiVtdA~ t !&5 lim
T→`

lim
k→0

e

~2p!2TE2`

`

dvx~v!E
2`

`

dv8
i

v81 ikE0

T

dtei (V2v)tE
2`

`

dsei (v2v8)scosVs

5 lim
T→`

lim
k→0

e

2~2p!TE2`

`

dvx~v!E
2`

`

dv8
i

v81 ik

ei (V2v)T21

i ~V2v!
@d~v2v81V!1d~v2v82V!#

5 lim
T→`

lim
k→0

e

2~2p!
E

2`

`

dvx~v!expS 2 i ~v2V!
T

2D sinS ~v2V!
T

2D
~v2V!

T

2

F i

v2V1 ik
1

i

v1V1 ikG . ~A4!

Becausex(v) is assumed to be meromorphic without poles at infinityx(v) is finite on the infinite demicircle in the lowe
complex plane,

lim
R→`

ux~Reiw!u,M , wP@p,2p#. ~A5!

This allows one to show by some simple estimates that the last integral in Eq.~A4!, evaluated over the infinite demicircle i
the negative complex plane, vanishes so that the integral in Eq.~A4! can be extended by the infinite demicircle to the clos
loop G around the negative complex plane. Once more, using thatx(v) is meromorphic in the lower complex plane, i.e., t
only singularities in that part of the plane are poles, one is now able to evaluate Eq.~A4! by the method of residues. Letvk
denote the locations of the poles ofx(v) and r k their respective residues. Then one has

^eiVtdA~ t !&5 lim
T→`

lim
k→0

e

2~2p!
R

G
dvx~v!expS 2 i ~v2V!

T

2D sinS ~v2V!
T

2D
~v2V!

T

2

F i

v2V1 ik
1

i

v1V1 ikG

5
e

2
lim

T→`H x~V!1x~2V!eiVT
sinVT

VT
1 (

k50

`

r k expS 2 i ~vk2V!
T

2D sin~vk2V!
T

2

~vk2V!
T

2

F 1

vk2V
1

1

vk1VGJ
5

e

2
x~V!, ~A6!
-
d

rie

er

that

e

rt
where in the last line the assumption that all polesvk lie off
the real axis was used. Besides a missing limite→0, which
should be inserted into Eq.~A6! to stress the fact that math
ematicallyxA is only defined in this limit, this is the desire
relationship~2.8!.

APPENDIX B

In this appendix the effect of a finite integration timeT on
the accuracy of the numerical computation ofxA(V) by Eq.
~2.8! is discussed; especially Eq.~2.10! will be derived.

As discussed in Sec. II it is assumed that the time se
dA(t) consists of two parts, a chaotic parta(t) and a peri-
odic part oscillating at driving frequencyV and its harmon-
ics nV,

dA~ t !5a~ t !1 (
n51

`

bn cos~nVt2fn!. ~B1!
03610
s

In order to specifya(t) as chaotic, assume that its Fouri
transform is continous. Then

1

TE0

T

dt eiVta~ t !5
1

2pE2`

`

dv a~v!expS i ~V2v!
T

2D

3

sin~V2v!
T

2

~V2v!
T

2

'
a~V!

2T
, ~B2!

where in the last step use has been made of the fact
sin@(V2v)T/2#/@(V2v)T/2# is heavily peaked atv5V for
sufficiently largeT, and thus the continous functiona(v) is
mainly evaluated aroundv5V and can be drawn before th
integral.

Together with similar computations for the periodic pa
one obtains with Eq.~2.9!,
3-8
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xA
T~V!5

a~V!

eT
1xA* ~V!eiVT

sinVT

VT
1xA~V!1

1

e (
n52

`

bnF e2 ifn expS i ~n11!V
T

2D sin~n11!V
T

2

~n11!V
T

2

1eifn expS 2 i ~n21!V
T

2D sin~n21!V
T

2

~n21!V
T

2

G , ~B3!
h
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where the identityb1eif15exA(V) has been used, whic
can be verified from the limitT→`. To obtainxA numeri-
cally for finite T all other terms in Eq.~B3! have to be small.
This is the case for the first term ifeT is sufficiently large
and the second term is negligible ifVT@1. The terms in the
infinite sum are small ifeVT@1. ~Actually numerical com-
putations show thatbn;e2 for n.1 ~as expected in linea
response theory! so that the sum is negligible if the muc
weaker conditionVT/e@1 is fulfilled.! Since one is inter-
ested here only in the casee!1, these conditions can b
condensed toeVT@1, as claimed in Eq.~2.11!.

To explain the fluctuating plateau observed in the
sponse inx ~see Fig. 7! one has to go a step further. I
computations of spectra of time series of periodically p
turbed chaotic systems one observes that the height of
periodic peaks depends on the particular interval of the i
nite time series used to compute the spectrum. So the am
tude of the periodic contribution in Eq.~B1! is not a constant
but may depend on time. For simplicity we neglect harmo
ics and concentrate on the fundamental frequencyV only.
Accordingly, assume that in addition tob1 there is a time
dependent chaotic contributionc1(t) ~with zero mean!
modulating the periodic part aroundb1. So Eq.~B1! assumes
the form

dA~ t !5a~ t !1@b11c1~ t !#cos~Vt2f1!. ~B4!

The same procedure as above gives

1

TE0

T

dt eiVtc1~ t !cos~Vt2f1!'
1

4T
c1~v522V!e2 if1

~B5!

@wherec1(v50)50 was used#. So one gets another contr
bution to Eq.~B3!,

1

eT
c1~2V!e2 if1. ~B6!

Assumingc1(t) to be proportional toe, because it is a resul
of the external perturbation, this contribution is independ
of e but vanishes forT→`. So if the response functionxA

vanishes, this contribution produces in a plot ofxA
T againste

~like in Fig. 7! a plateau around which the fluctuations
different runs can be seen.
03610
-

-
he
-
li-

-

t

APPENDIX C

From Eq.~6.1! a host of relations between response fun
tions can be derived. Consider for the Lorenz system obs
ables of type

A~x!5xkylzm, k,l ,mPN. ~C1!

Related response functions will be denoted byxk,l ,m(V) and
for shortness the dependence onV is omitted. From Eqs.
~6.1!, ~2.8!, and~2.1! one obtains

2 iVxk,l ,m5 lim
e→0

2

e K eiVtS d

dt
~xkylzm!2 K d

dt
~xkylzm!L

0
D L

e

5ksxk21,l 11,m2~ks1 l 1bm!xk,l ,m

1 lr xk11,l 21,m2 lxk11,l 21,m111mxk11,l 11,m21

12l lim
e→0

^eiVt cos~Vt !xk11yl 21zm&e ~C2!

becausê Ȧ&050 for boundedA(x). Moreover,

2 lim
e→0

^eiVt cos~Vt !xk11yl 21zm&e5^xk11yl 21zm&0 ,

~C3!

because, in analogy to the considerations of Sec.
^e2iVtxk11yl 21zm&;e2. Entering these results into Eq.~C2!
one finally obtains

~ks1 l 1bm2 iV!xk,l ,m

5ksxk21,l 11,m1 lr xk11,l 21,m1mxk11,l 11,m21

2 lxk11,l 21,m111 l ^xk11yl 21zm&0 . ~C4!

Relations~6.2! are special cases of this result for (k,l ,m)
5(0,0,1) and (k,l ,m)5(2,0,0).

APPENDIX D

Equation~6.1!, from which the relations~6.2! and ~6.3!
between the response functions were derived, and also
vanishing of the linear response inA(x)5x ~see Sec. VII!
have so far been derived from the time series representa
~2.8! of response functions. In this appendix it is shown th
a more standard approach by a Kubo-type theory as
3-9



n

-

e

.

erv-
-

CHRISTIAN H. REICK PHYSICAL REVIEW E66, 036103 ~2002!
sented in@4,24# leads to the same results.
Consider a perturbed dynamical system

ẋ5F0~x!1e~ t !F1~x! ~D1!

with e(t)50 for t,0. Then the related Liouville equatio
for the nonequilibrium densityr(x,t) reads

i
]r

]t
5L0r1e~ t !L1r, ~D2!

where the Liouville operatorL0 and the perturbation opera
tor L1 are given by

Lkr52 i“•@Fk~x!r#, k50,1. ~D3!

Let r0(x) denote the stationary density of the unperturb
system (L0r050). Then Eq.~D2! has to first order ine the
solution

r~x,t !5r0~x!2 i E
t0

t

dse~s!ei (s2t)L0L1r0~x!1O~e2!.

~D4!

Rewriting Eq.~2.3! as
s

03610
d

Š^dA~ t !&‹5E dxdA~x!r~x,t ! ~D5!

and entering Eq.~D4! one finds by a comparison with Eq
~2.2!

xA~t!52 iQ~t!E dxA~x!e2 i tL0L1r0~x!. ~D6!

From this equation the vanishing response in the obs
ableA(x)5x follows immediately by noting that for the per
turbed Lorenz system~2.1! L0 andL1 are invariant under the
symmetry operationS introduced in Sec. VII so that also
e2 i tL0L1r0(x) is symmetric, becauser0 is symmetric@13#.
But the observableA(x)5x is antisymmetric. Accordingly,
the integral in Eq.~D6! vanishes so that indeedxx(t)50 and
thusxx(v)50.

To derive Eq.~6.1! consider the observable

Ȧ~x!5
d

dt
A~x~ t !!5 ẋ•“A~x!5F0•“A1e~ t !F1•“A.

~D7!

Because in the unperturbed systemŠ^Ȧ&‹50 one gets@from
Eqs.~D4! and ~D7!#
Š^dȦ~ t !&‹5Š^Ȧ~ t !&‹5E dx r0F0•“A1e~ t !E dx r0F1“A2 i E
t0

t

dse~s!E dx~ei (s2t)L0L1r0!~F0•“A!1O~e2!

52 i E dxA~x!L0r02 i E
2`

1`

dse~s!d~ t2s!E dx A~x!L1r02E
2`

1`

dse~s!Q~ t2s!E dx A~x!L 0ei (s2t)L0L1r0

1O~e2!. ~D8!

Using L0r050, a comparison with Eq.~2.2! finally gives

x Ȧ~t!52 id~t!E dx A~x!L1r02Q~t!E dx A~x!L 0e2 i tL0L1r0

52 id~t!E dx A~x!L1r02 iQ~t!
d

dtE dx A~x!e2 i tL0L1r0

5
d

dt
xA~t!, ~D9!

where in the last line Eq.~D6! and (d/dt)Q(t)5d(t) have been used. A Fourier transform gives the desired relation~6.1!.
ys.
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